Social Media Application in Healthcare

The present paper is devoted to a short analysis of four TED presentations by Christakis (2010), Cukier (2014), Golbeck (2013), and Selanikio (2014), who discuss the topic of data analytics. Two of the authors consider the issue directly in the context of healthcare, but it is possible to apply the information from all of the presentations to the field.

There are multiple applications of social media in healthcare, but from the point of view of analytics, it is a useful source of crucial information. Social media is an umbrella term for multiple forms of electronic networks that are primarily aimed at moving “from passive consumption to active creation of diverse types of content by Internet users” (Kotov, 2015, p. 309). As pointed out by Christakis (2010), social networks are not a new invention; people have been creating networks throughout their history by forming relationships with people who are bound to be in relationships with other people.

These real-world networks are governed by a variety of principles and rules that are defined by human biology and psychology, their social norms, and even some mathematical laws. For example, the nodes of the networks (people) can be characterized by different numbers of relationships, and the relationships can be of various kinds (friendship, spousal connection, and so on). These characteristics can define, for instance, the chance of a person being affected by a contagious phenomenon. Therefore, by studying any form of network (social media included), people can gain the information that allows predicting events based on the found rules. Christakis (2010) points out that one of such predictable events is epidemics.

It is noteworthy that socially contagious phenomena are not limited to pathogen-related ones. For instance, Mitra and Padman (2014) offer an example of tracking patient health plan choices with the aim of spreading patient engagement in their personal health through social media, which is a clear illustration of the use of analytics to trigger a contagious event. Christakis (2010) points out that any socially contagious phenomenon is bound to manifest itself in social networks since it is spread through these networks, which makes it detectable. Since prediction is based on gathering and analyzing information, it is apparent that social networks can be used to gain data of importance for the agenda. As a result, a fashion trend can be tracked as well as a disease. For example, Golbeck (2013) confirms that it is possible to use social media data for predicting and inferring, but she mostly discusses marketing applications of the ability, which she considers largely unethical.

Indeed, there are barriers to social media use, including feasibility concerns and ethical issues. Cukier (2014) mentions that there are dangers in big data, predominantly those connected to its misuse. It is a very significant issue that Golbeck (2013) and Christakis (2010) want to resolve through science (for example, education and protecting applications). Also, Selanikio (2014) points out that the Internet is not omnipotent for the time being: for example, the statistics of child deaths for some countries are mainly unavailable. However, Selanikio (2014) also admits that the Internet is very convenient for searches and has a greater speed and potential for accuracy than the traditional means. In fact, Selanikio (2014) demonstrates that traditional methods are almost useless when big data is considered. At the same time, as pointed out by Cukier (2014), big data promises great improvements, which implies that healthcare is going to employ it (Raghupathi & Raghupathi, 2014). As a result, the four presentations demonstrate that healthcare can and should employ social media while bearing in mind the multiple issues and searching for the means of resolving them, for example, through science.

References

Christakis, N. (2010). Web.

Cukier, K. (2014). Web.

Golbeck, J. (2013). Web.

Kotov, A. (2015). Social media analytics for healthcare. In C. K. Reddy & C. C. Aggarwal (Eds.), Healthcare data analytics (pp. 309-334). New York, NY: CRC Press.

Mitra, S. & Padman, R. (2014). Journal of Cases on Information Technology, 16(1), 73-89. Web.

Raghupathi, W. & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science And Systems, 2(1), 3. Web.

Selanikio, J. (2013). Web.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with My Homework Geeks
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Live ChatWhatsApp